1. Find the domain and range of the relation \(R = \{(4, -1), (2, -2), (1, 1)\} \).

2. Find the domain and range of the relation \(R = \{(x, y) \mid y = 3x\} \).

3. Find the domain and range of the relation \(R = \{(x, y) \mid y < 2x, \text{ x and y positive integers less than } 6\} \).

4. Which of the following relations is (are) functions?
 a. \(\{(x, y) \mid y^2 = 2x + 1\} \)
 b. \(\{(x, y) \mid y = 2x^2 + 1\} \)
 c. \(\{(2, 3), (3, 3), (4, 3)\} \)

5. A function is defined by \(f(x) = 2x - x^2 \). Find:
 a. \(f(0) \)
 b. \(f(1) \)
 c. \(f(-2) \)

6. The daily cost for renting a car ($20 per day plus $0.15 per mile) is given by \(C(m) = 20 + 0.15m \), where \(m \) is the number of miles driven. If a person paid $53.75 for one day’s rental, how many miles did the person drive?

7. Graph the relation \(R = \{(x, y) \mid y = 2x, \text{ x an integer between } -2 \text{ and } 2, \text{ inclusive}\} \).
8. Graph the relation $Q = \{(x, y) \mid x + y \leq 2, x \text{ and } y \text{ nonnegative integers}\}$.

9. Graph the function defined by $g(x) = x^2 - 2$, x an integer and $-2 \leq x \leq 2$.

10. Graph the function defined by $f(x) = 2 - 2x$.
11. Graph the equation $2x - 3y = -6$.

12. Find the distance between the two points:
 a. $(1, 0), (3, -4)$
 b. $(7, -2), (7, -12)$

13. Find the slope of the line that goes through the two points $(-2, 1)$ and $(-4, -5)$.

14. Find the general equation of the line in Problem 13.

15. a. Find the slope-intercept form of the equation of the line that goes through the point $(-2, 4)$ and has slope -3.
 b. Find the slope-intercept form of the line $3x + 4y = 8$. What is the slope and what is the y-intercept?

16. Determine whether or not the two given lines are parallel. If they are not parallel, find the coordinates of the point of intersection.
 a. $2x - y = 7$, $3y = 6x - 15$
 b. $y = 4 - 2x$, $6x + 2y = 9$

17. Find the general equation of the line that passes through the point $(3, 4)$ and is parallel to the line $2x + y = -4$.

18. Find the point of intersection of the lines $x + y = 6$ and $2x - y = 0$.
19. Graph the solution set of the inequality \[2y - 3x \leq 6. \]

20. Graph the solution set of the system of inequalities: \[3x + y \geq 6 \] and \[x + y \geq 2 \]

21. Graph the solution set of the system of inequalities: \[x + y \leq 3, \quad x \geq y, \quad y \geq 0 \]

22. Solve the following system if possible. If not possible, explain why:
\[
\begin{align*}
y &= 3x - 3 \\
9x - 3y &= 6
\end{align*}
\]
23. Find the maximum value of \(C = 3x + 2y \) subject to the constraints:
 \(x + 2y \geq 6, \quad 0 \leq x \leq 2, \quad \text{and} \quad 0 \leq y \leq 4 \)

24. Find the minimum value of \(P = x - 2y \) subject to the constraints:
 \(x - y \leq 2, \quad x + y \leq 4, \quad x \geq 0, \quad 0 \leq y \leq 2 \)

25. Two machines produce the same item. Machine A can produce 10 items per hour and machine B can produce 12 items per hour. At least 420 of the items must be produced each 40-hour week, but the machines cannot be operated at the same time. If it costs $30 per hour to operate A and $40 per hour to operate B, determine how many hours per week to operate each machine to meet the production requirement at minimum machine cost.

26. Graph \(y = -(x + 1)^2 - 2 \)

27. Graph \(y = x^2 + 2x + 2 \) and give the coordinates of the vertex.
28. Graph $f(x) = 4^x$ and $g(x) = \left(\frac{1}{4}\right)^x$ on the same coordinate axes.

29. Graph $f(x) = e^x$ and $g(x) = \ln x$ on the same coordinate axes.

30. P dollars accumulate to the amount $A = Pe^{rt}$ when invested at a rate r for t years. If the interest rate is 10%, how long would it take for the money to double?
1. The domain of the relation \(R = \{(1, 1), (2, -2), (4, -1)\} \) is
 a. \{-2, -1, 1\}
 b. \{1, 2, 4\}
 c. \{-2, -1, 1, 2, 4\}
 d. \{-2, -1, 1, 2, 4\}
 e. None of these

2. The range of the relation \(R = \{(x, y) \mid y = 3x\} \) is
 a. The positive real numbers
 b. The positive integers
 c. The integers
 d. The real numbers
 e. None of these

3. The range of the relation \(\{(x, y) \mid y < 2x, \ x \text{ and } y \text{ positive integers less than 6}\} \) is
 a. \{1, 2, 3, 4, 5\}
 b. \{1, 2, 3, 4\}
 c. \{1, 2, 3\}
 d. \{1, 2\}
 e. \{1\}

4. Which of the following relations are functions?
 a. \(\{(x, y) \mid y^2 = 2x + 1\} \)
 b. \(\{(x, y) \mid y = 2x^2 + 1\} \)
 c. \(\{(2, 3), (3, 3), (4, 3)\} \)
 a. a only
 b. b only
 c. b and c only
 d. a and b only
 e. None of these

5. If a function is defined by \(f(x) = 2x - x^2 \), then \(f(2) \) equals
 a. 6
 b. 2
 c. 8
 d. 4x - x^2
 e. 0

6. The daily cost of renting a car is \(C(m) = 20 + 0.15m \) dollars, where \(m \) is the number of miles driven. If a person paid \$53.75 for one day's rental, the number of miles the person drove is
 a. 175
 b. 472
 c. 205
 d. 225
 e. 200

7. The graph of \(R = \{(x, y) \mid y = -2x, \ x \text{ an integer between -2 and 2, inclusive}\} \) is
 a.
 b.
 c.
 d.
 e. None of these
8. The graph of the relation \(Q = \{ (x,y) \mid x + y \leq 2, \text{x and y nonnegative integers} \} \) is

 a. \hspace{1cm} b. \hspace{1cm} c. \hspace{1cm} d. \hspace{1cm} e. None of these

 ![Graphs]

9. The graph of the function defined by \(g(x) = x^2 - 2, \text{x an integer and } -2 \leq x \leq 2 \) is

 a. \hspace{1cm} b. \hspace{1cm} c. \hspace{1cm} d. \hspace{1cm} e. None of these

 ![Graphs]

10. The graph of \(f(x) = 2 - 2x \) is

 a. \hspace{1cm} b. \hspace{1cm} c. \hspace{1cm} d. \hspace{1cm} e. None of these

 ![Graphs]

11. The graph of the equation \(2x - 3y = -6 \) is

 a. \hspace{1cm} b. \hspace{1cm} c. \hspace{1cm} d. \hspace{1cm} e. None of these

 ![Graphs]
12. The distance between (1, 0) and (3, -4) is
 a. $3\sqrt{2}$ b. 8 c. $\sqrt{6}$
 d. $2\sqrt{5}$ e. None of these

13. The slope of the line through (-2, 1) and (-4, -5) is
 a. 1/3 b. -1/3 c. 3
d. -3 e. None of these

14. The general equation of the line through (1, 2) and (-5, 4) is
 a. $-x - 3y = 7$ b. $x + 3y = 7$ c. $x + 3y = -7$
 d. $x - 3y = 7$ e. None of these

15. The slope and the y-intercept of the line $3x - 4y = -12$ are, respectively,
 a. 4/3, -3 b. 3/4, -3 c. 3/4, 3
 d. 4/3, 3 e. None of these

16. Which of the following lines are parallel?
 1. $y = 4 - 4x$ 2. $6x - 2y = 9$ 3. $8x + 2y = 9$
 a. 1 and 2 only b. 1 and 3 only c. 2 and 3 only
d. All three are parallel. e. None of these

17. The general equation of the line passing through the point (3, 4) and parallel to the line $2x - y = -4$ is:
 a. $y - 4 = 2(x - 3)$ b. $y = 2x$ c. $2x - y = 2$
 d. $y - 4 = -2(x - 3)$ e. $-2x + y = -8$

18. Find the point of intersection (if there is one) of the lines $2x - y = 7$ and $3y = 6x - 15$
 a. (2, 3) b. (-2, 3) c. (-2, -3)
 d. (2, -3) e. There is none.

19. The graph of the solution set of $2y - 3x \leq 6$ is
 a. b. c. d. e. None of these
20. The graph of the solution set of the system of inequalities
\(3x + y \geq 6\) and \(x + y \geq 2\) is:

a. \[\begin{array}{c}
\text{Graph 1}
\end{array}\]
b. \[\begin{array}{c}
\text{Graph 2}
\end{array}\]
c. \[\begin{array}{c}
\text{Graph 3}
\end{array}\]
d. \[\begin{array}{c}
\text{Graph 4}
\end{array}\]
e. None of these

21. The graph of the solution set of the system of inequalities
\(3x + 2y \geq 6\), \(x \geq y\), and \(y \geq 0\) is

a. \[\begin{array}{c}
\text{Graph 5}
\end{array}\]
b. \[\begin{array}{c}
\text{Graph 6}
\end{array}\]
c. \[\begin{array}{c}
\text{Graph 7}
\end{array}\]
d. \[\begin{array}{c}
\text{Graph 8}
\end{array}\]
e. None of these

22. Which system of equations has no solution:

a. \(x + 2y = 9\) \(x + 2y = 7\)
b. \(x + 2y = 9\) \(4x + 8y = 36\)
c. \(x + 2y = 9\) \(x - 2y = 7\)
d. \(x - 2y = 9\) \(x + 2y = 9\)
e. All of the systems have solutions

23. The maximum value of \(C = 3x + 2y\) subject to the constraints
\(x + 2y \geq 6\), \(0 \leq x \leq 2\), and \(0 \leq y \leq 4\) is

a. 12
b. 14
c. 10
d. 4
e. None of these

24. The minimum value of \(P = x - 2y\) subject to the constraints
\(x - y \leq 2\), \(x + y \leq 4\), \(x \geq 0\), and \(0 \leq y \leq 2\) is

a. 0
b. 2
c. -2
d. -4
e. None of these
25. Two machines produce the same items. Machine A can produce 10 items per hour and machine B can produce 12 items per hour. At least 420 of the items must be produced each 40-hour week, but the machines cannot be operated at the same time. If it costs $30 per hour to operate A and $40 per hour to operate B, find the number of hours per week machines A and B, respectively, should be operated to minimize the cost.

a. 10 and 30 b. 30 and 10 c. 40 and 0
d. 0 and 35 e. None of these

26. The graph of \(y = -(x + 1)^2 - 2 \) is:

a.

b.

c.

d.

e. None of these

27. The coordinates of the vertex of \(y = x^2 + 2x + 2 \) are:

a. (-1, 1) b. (-1, -1) c. (1, -1)
d. (-2, -2) e. None of these

28. The graphs of \(f(x) = 4^x \) and \(g(x) = \left(\frac{1}{4}\right)^x \) are, respectively,

a. (1) and (4) b. (3) and (4) c. (1) and (4)
d. (1) and (3) e. None of these
29. The graphs of \(f(x) = e^x \) and \(g(x) = \ln x \) are, respectively,

\[
\begin{align*}
(1) & \quad (2) & \quad (3) & \quad (4) \\
\end{align*}
\]

a. (1) and (4) b. (2) and (4) c. (2) and (3) d. (1) and (3) e. None of these

30. How long would it take for \(P \) dollars to **double** if they are invested at 10%? Hint: \(A = Pe^{rt} \), where \(P \) is the principal, \(r \) the rate, \(t \) the time in years.

\[
\begin{align*}
a. & \quad \frac{\ln 2}{0.10} & b. & \quad \frac{\ln 2}{10} & c. & \quad \frac{2}{0.10} \\
d. & \quad \frac{\ln 2}{\ln 0.10} & e. & \quad \text{None of these}
\end{align*}
\]