1. Find the x-intercepts for the graph of \(f(x) = x^2 - 6x + 2 \).

2. Graph \(f(x) = 3 - (x + 2)^2 \).

3. Find the vertex of the parabola described by \(y = -7x^2 + 14x + 3 \).

4. Find the domain of the function \(f(x) = \frac{x^2 - 1}{x^2 + 3x - 4} \).

5. Find the quotient and remainder of \(\frac{x^3 - 2x^2 - 5x + 6}{x + 2} \).

6. Graph the polynomial function \(P(x) = x^5 - 4x^3 \).

7. Find all the zeros of \(f(x) = 2x^3 - 2x^2 - 8x + 8 \) given that 2 is one of the zeros.

8. Find the quotient: \(\frac{-6x^3 + x^2 + 17x + 3}{2x + 3} \).

9. Find the value \(P(-2) \) of the polynomial \(P(x) = x^4 + 5x^3 - 7x^2 + 9x + 17 \) using the Remainder Theorem.

10. Find all rational roots of the equation \(x^3 - 5x^2 - 4x + 20 = 0 \) and then find the irrational roots, if any.

11. Find the zeros of the polynomial function \(f(x) = x^4 + x^3 - 15x^2 \).

12. For \(P(x) = 2x^{18} - 5x^{13} + 6x^3 - 5x + 9 \), list all possible rational zeros given by the Rational Zeros Test, but do not check to see which values are actually zeros.

13. Describe the end behavior of \(f(x) = (x + 3)^3 (x - 5)^2 \).

14. Find the zeros and the multiplicity of each zero for \(f(x) = (x^2 - 4)(x + 2)^3 \).

15. Determine how many positive and how many negative real zeros the polynomial function \(P(x) = 3x^6 + 2x^3 - 7x^2 + 8x \) can have.
16. Find the horizontal and the vertical asymptotes of the graph of \(f(x) = \frac{2x^2 + 3}{x^2 - x - 20}. \)

17. Write an equation that expresses the statement, “\(y \) is directly proportional to \(x \) and inversely proportional to the square of \(t \).”

18. In Problem 17, suppose \(y = 6 \) when \(x = 8 \) and \(t = 2 \). Find \(y \) if \(x = 12 \) and \(t = 3 \).

19. The cost, \(C \), of producing \(x \) thousand units of a product is given by

\[
C = x^2 - 30x + 335 \text{ (dollars)}.
\]

Find the value of \(x \) for which the cost is minimum.

20. From a rectangular \(8 \times 17 \) piece of cardboard, four congruent squares of side length \(x \) are cut out, one at each corner. The sides can then be folded to form a box. Find the volume, \(V \), of the box as a function for \(x \).

21. Write \((2 + 3i)(3 - 2i)\) in the form \(a + bi \).

22. Write \(\frac{3 + 5i}{1 - 3i}\) in the form \(a + bi \).